| Journal of Food Bioactives, ISSN 2637-8752 print, 2637-8779 online |
| Journal website www.isnff-jfb.com |
Review
Volume 9, March 2020, pages 10-22
Pomegranate as a natural source of phenolic antioxidants: a review
Tables
| Pulp | Peel | Reference | |
|---|---|---|---|
| Anthocyanin | |||
| Delphinidin-3,5-diglucoside | 9.43 | 50.64 | Morzelle et al., 2019 |
| cyanidin-3,5-diglucoside | 5.57 | 0.021–23.57 | Morzelle et al., 2019, Mehrizi et al., 2017 |
| cyanidin-3-glucoside | 0.76 | 0.007–22.83 | Morzelle et al., 2019; Mehrizi et al., 2017 |
| pelargonidin-3,5-diglucoside | 0.87 | 0.005–8.05 | Morzelle et al., 2019, Mehrizi et al., 2017 |
| Hydrolyzable tannins | |||
| Punicalagin A | 0.063 | 1.48–7.5 | Morzelle et al., 2019, Rahnemoon et al., 2018 |
| Punicalagin B | 0.066 | 2.38–6.24 | Morzelle et al., 2019, Rahnemoon et al., 2018 |
| Phenolic acids | |||
| Gallic acid | 0.07–0.19 | 0.025–1.01 | Morzelle et al., 2019, Li et al., 2016, Song et al., 2016 |
| Ellagic acid | 0.54–2.11 | 0.029–7.07 | Li et al., 2016, Song et al., 2016 |
| Chlorogenic acid | – | 0.004 | Song et al., 2016 |
| p-coumaric acid | 0.006 | 0.023 | Morzelle et al., 2019 |
| Flavonoids | |||
| Catechin | – | 12.8 | Ambigaipalan et al., 2016 |
| Epicatechin | 0.019 | 0.010–0.198 | Morzelle et al., 2019; Song et al., 2016 |
| Soluble Procyanidins | |||
| procyandin dimer | 42.1 | – | Ambigaipalan et al., 2016 |
| procyanidin dimer B1 | 9.09 | – | Ambigaipalan et al., 2016 |
| procyanidin dimer B2 | 27.8 | – | Ambigaipalan et al., 2016 |
| procyanidin dimer B3 | 37.9 | – | Ambigaipalan et al., 2016 |
| Pomegrante-based products | GA | EA | Punicalagin | |
|---|---|---|---|---|
| aSuplemented with pomegranate peel extract; bImpure montmorillonite and extract of pomegranate fruit waste (%). GA: Gallic acid; EA: Ellagic acid. | ||||
| Wine (mg/L) (Akalin et al., 2018) | 80.4–108.8 | – | – | |
| Fermented milk (μg/g) (Al-Hindi and El Ghani., 2020) | PP 150 mg/La PP 300 mg/La | 152.4–167 182.1–195.7 | 9.62–15.4 13.2–19.6 | 111.2–162.5 190.8–211.6 |
| Juice (Cano-Lamadrid et al., 2016) | Conventional Organic (mg/L) | – – | Tr Tr | 201 104 |
| Juice (Gil et al., 2000; Fischer et al., 2011; Özgüvem et al., 2019) | commercial (mg/L) | 1.1–10.72 | 2.1–37.9 | 1259.8 |
| Juice (Hmid et al., 2017) | commercial (mg/g) | 0.05–0.14 | 0.02 | 0.01–0.70 |
| Juice (Gil et al., 2000) | concentrate (mg/L) | – | 172.8 | 1,353.1 |
| Juice (Gil et al., 2000; Hmid et at., 2017) | with arils (mg/L) | 12.42–88.51 | 8.7–95.02 | 22.8–25.5 |
| In vitro assay | Extract | Origin | Range | Reference | |
|---|---|---|---|---|---|
| aHomemade juice; bCommercial juice; c0.028 mg·mL−1. n.i.: not identified. | |||||
| Peel | β-carotene bleaching test (Antioxidant activity %) | ethanol | Iran | 45–58 | Derakhshan et al., 2018 |
| Seed | β-carotene bleaching test (Antioxidant activity %) | ethanol | Iran | 34–54 | Derakhshan et al., 2018 |
| Juice | β-carotene bleaching test (Antioxidant activity %) | ethanol | Iran | 9–10 | Derakhshan et al., 2018 |
| Juicea | FRAP (mmol TE/L of juice) | Aqueous | India | 22.09–25.68 | Dżugan et al., 2018 |
| Juiceb | FRAP (mmol TE/L of juice) | Aqueous | Turkey Israel Azerbaijan Russia Azerbaijan | 57.17 30.86 70.33 8.23 47.96 | Dżugan et al., 2018 |
| Extractc | Scavenger Effect on Superoxide Anion (% of inhibition) | ethanol | n.i. | 95 | Sorrenti et al., 2019 |
| Peel | ORAC (μmol TE/g DW) | ethanol | United States | 7423.0 | Morzelle et al., 2019 |
| Pulp | ORAC (μmol TE/g DW) | ethanol | United States | 323.8 | Morzelle et al., 2019 |
| Reference | Type of food | Results |
|---|---|---|
| Ahmed et al., 2017 | broiler meat | improved nutritional quality, fatty acid profile, and shelf life |
| Ahmed et al., 2015 | broiler meat | improved fatty acid profile and reduced lipid oxidation |
| Berizi et al., 2018 | rainbow trout | prevented the oxidation of fats and proteins and antimicrobial activity |
| Devatkal et al., 2010 | goat meat patties | reduced lipid oxidation (TBARS) |
| Devatkal et al., 2011 | salted chicken patties | reduced lipid oxidation (TBARS) |
| Dua et al., 2016 | fat rich meat | lower TBARS values |
| Gomalkani et al., 2020 | Linseed oil | improved oxidative stability |
| Ismail et al., 2019 | Minced Shrimps | inhibited TBARS production during 28 days of refrigerated storage |
| Martínez et al., 2019 | Fish Patties | delayed lipid oxidation, measured as volatile compounds, and the microbiological spoilage |
| Morsy et al., 2018 | meatballs | Reduced contents of peroxide, TBARS, and total volatile base nitrogen (TVB-N) |
| Natalello et al., 2020 | lamb meat | reduced lipid oxidation, greater concentration of vitamin E and polyunsaturated fatty acids |
| Naveena et al., 2008b | chicken patties | inhibited lipid oxidation |
| Qin et al., 2013 | Pork Meat | reduced lipid oxidation |