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Abstract

Phospholipids are important ingredients in milk. They serve as bioactive components with processing function-
alities, despite representing only a small proportion of total milk lipids. There has been increasing interest in 
vesicle properties and health effects of milk phospholipids. However, there are limited reports on industry-scale 
manufacturing of related commercial products. This contribution aims to elucidate the industrial processes of 
manufacturing milk phospholipid products including phospholipid extraction and fraction as well as summarizing 
determination assays of milk phospholipids. In addition to industrial production, this review elaborates on appli-
cation aspects, such as the biological properties of milk phospholipids and their technical importance as delivery 
vesicles of liposomes and phytosomes. In addition, new insights on large-scale production of milk phospholipids 
and new applications such as phytosomes and antioxidant properties are discussed.

Keywords: Milk phospholipids; Solvent extraction; Liposome; Phytosome; Health effects; Vesicle properties.

1. Introduction

Milk contributes about one third of human dietary lipid intake 
(USDA, 2017). Milk phospholipids have been used as materials 
for nutrient carriers since the early 2000s. Thompson (2005) first 
used milk phospholipids to fabricate three kinds of liposome to 
encapsulate bioactive compounds. Since then, milk phospholipid-
based liposomes have been prepared to encapsulate ascorbic acid 
(Farhang et al., 2012) and lactoferrin (Liu et al., 2013). More re-
cently, milk phospholipid liposomes were applied to improve the 
storage stability of encapsulates (Gulseren and Corredig, 2013), 
the encapsulate solubility and encapsulation efficiency (Jin et 
al., 2016; Liu et al., 2012) and the bioavailability of encapsulate 

(Maswadeh et al., 2015), showing better efficiency than soy leci-
thin (Liu et al., 2012). Furthermore, in terms of biological effects, 
several review papers have summarized various health benefits of 
milk phospholipids, with emphasis on therapeutic aspects (Castro-
Gómez et al., 2015), infant’s gut development and cognitive func-
tions (Ortega-Anaya and Jimenez-Flores, 2018), and physiological 
functionalities (Verardo et al., 2017).

This contribution aims to summarize the industrial processes 
of manufacturing milk phospholipids, to update last five-year re-
sults on using phytosomes or liposomes to enhance bioavailability 
of bioactive compounds. It also reports on the recent trends on 
biological activities of milk phospholipids including antioxidant 
potential.
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2. Structure, composition and occurrence

2.1. Molecular structure

Milk phospholipids include two subclasses, glycerophospholip-
ids and sphingolipids. Glycerophospholipids consist of a glycerol 
moiety with two fatty acids (lipophilic) esterified at positions of 
sn-1 and sn-2 and a hydroxyl group at sn-3 position, linked to a 
phosphate group and a hydrophilic residue. The structural details 
of the latter determine the types of glycerophospholipids, namely 
phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidy-
lethanolamine (PE), phosphatidylinositol (PI), phosphatidyl-glyc-
erol (PG), and phosphatidic acid (PA) (Verardo et al., 2017). The 
amphiphilic structure (lipophilic tail and hydrophilic head) pro-
vides milk phospholipids with emulsification properties.

Sphingolipids consists of sphingosine backbone (2-amino-4-oc-
tadecene-1,3-diol), linked to a fatty acid through an amide bond 
and a polar head. Sphingomyelin (SM) is a prominent subclass 
of sphingolipids, having a phosphocholine head group. A minor 
constituent of sphingolipids in milk is glycosphingolipid, whose 
polar group comprises carbohydrate groups (glucose, galactcose, 
and lactose) (Ortega-Anaya and Jimenez-Flores, 2018).

2.2. Composition

Milk lipids represent approximately 4% of bovine milk (Bylund, 
2015). Among total milk fat, only 0.32–1% represents phospho-
lipid compounds (Le et al., 2015). Thus, it takes 2.5–8 liters of 
raw milk to produce one gram of phospholipids. Phospholipids are 
structured, functional lipids (Jala and Kumar, 2018). In all the three 
phospholipid sources, PC and PE contributes to the major propor-
tion (52, 55 and 90% for milk, soy and egg yolk, respectively) of 
polar lipids. Compared to soy lecithin and egg yolk lecithin, milk 
phospholipids have a more balanced distribution in each subclass. 
SM and PS (24 and 12% in milk phospholipid profile, respective-
ly), being regarded as functional ingredients for brain development 
(Castro-Gómez et al., 2015; Higurashi et al., 2015), are virtually 
absent in other sources, such as soy (0 and 0.5%, respectively) and 
egg yolk lecithin (1.5 and 0%, respectively) (Li, 2014).

Apart from SM and PS profile, milk phospholipids have ad-
vantages over the other two sources due to their natural origin, 
oxidative stability and color compatibility. Milk phospholipids 
have lower content of polyunsaturated fatty acids (PUFA 7.2–
7.9% (Lopez et al., 2008)) than soy lecithin (60.37% (Imran et al., 
2015)) and egg lecithin (23.2% (Asomaning and Curtis, 2017)). 
Unsaturated fatty acids had a proportion of approximately 46.14% 
for mature bovine milk phospholipids (Zou et al., 2015), and 33–
44.8% for two kinds of bovine milk polar lipids fed on maize si-
lage and linseed (Lopez et al., 2008), while for the lecithin of soy 
and egg yolk, this percentage was 79.58 (Imran et al., 2015) and 
54.6 (Asomaning and Curtis, 2017), respectively. Thus, milk phos-
pholipids are more resistant to oxidation than other phospholipids 
and they also have less color intensity for this kind of fatty acid 
profile (Ireland, 2014).

In terms of fatty acid profile of phospholipids, bovine milk, soy 
and egg yolk all have predominant distribution of long chain fatty 
acids (LCFA 13–21), and the abundance of their LCFA is above 
90% (Asomaning and Curtis, 2017; Butina et al., 2017). The top 
two prominent fatty acids of phospholipids for milk and egg yolk 
are oleic and palmitic acids, which together account for more than 
60%. The principal fatty acids of soy lecithin are linoleic and pal-
mitic acids, contributing to 63.4 and 16.4%, respectively (Lopez 

et al., 2014).

2.3. Occurrence

In intact raw bovine milk, phospholipids take the form of milk fat 
globule membrane (MFGM: 0.1–20 μm in diameter, 10–50 nm in 
thickness (Arranz and Corredig, 2017)). The triple-layer membrane 
consists of a surface-active inner monolayer enveloping triacylg-
lycerols (TAG) in the center and an outer bilayer in contact with 
the aqueous phase of milk (Castro-Gómez et al., 2015). The milk 
fat globule membrane is composed of polar lipids, proteins, gly-
coproteins, enzymes and minor neutral lipids (Zhao et al., 2019).

In dairy products, the triple-layer membrane structure becomes 
disrupted during processing and milk phospholipids redistrib-
ute into such products as buttermilk (BM) and beta serum pow-
der (BSP, >60% lipid), which is an aqueous dairy stream through 
phase inversion from an oil-in-water to a water-in-oil emulsion 
(Fletcher et al., 2006).

3. Industrial manufacturing

3.1. Phospholipid extraction from dairy products

Milk phospholipid concentrated streams are related to butter pro-
cessing, anhydrous milk fat (AMF) or whey fraction. Commercial 
milk phospholipid products are usually derived from dairy prod-
ucts, such as butter serum AMF, buttermilk, or acid butter whey. 
The level of phospholipids in these streams can be as high as 
11.54, 2.03 and 1.84%, respectively (Le et al., 2015). Butter serum 
powder represents the highest level of phospholipid concentrate 
among those dairy streams. Therefore, it is a preferred feed for 
making milk phospholipid.

AMF, derived either from fresh cream or butter, contains puri-
fied milk fat (>99.8%) with removal of water and non-fat solid 
(Bylund, 2015). Butter serum AMF consists of highest proportion 
of phospholipids, with 11.54, 1.25 and 48.4% in terms of dry matter 
(DM), wet base and lipid base, respectively (Pimentel et al., 2016; 
Smithers and Augustin, 2013). Buttermilk, a product of churn pro-
cess, is the serum of butter, containing the most of original milk 
whey proteins and less fat than butter (Chandan and Kilara, 2010). 
Buttermilk phospholipids are less abundant than those of butter 
serum, with 2.03% of dry matter (DM) content. Acid buttermilk 
whey has a DM-based protein percentage of approximately 84.7%, 
containing 1.84 and 0.1% phospholipids for dry and wet products, 
respectively (Smithers and Augustin, 2013). Intact milk fat globule 
membrane contains 30–70% polar lipids. However, it is generally 
only regarded as a laboratory source of phospholipids (Holzmüller 
and Kulozik, 2016; Lu et al., 2016).

Solvent extraction is one of the common methods to isolate milk 
phospholipids from dairy lipid concentrates. Ethanol is the most 
used solvent to extract milk lipids, for instance, hot alcohol (90%) 
extraction at 70 °C rendered around 90% recovery rate (Price et 
al., 2018). Ethanolic extraction of lipids from proteins resulted in 
high purity (75%) phospholipids (Burling and Graverholt, 2008). 
In a laboratory up-scaling test, supercritical carbon dioxide and 
20% ethanol was utilized to extract lipids and final product had a 
purity of 56.24 ± 0.07% (Barry et al., 2017). Supercritical carbon 
dioxide can only dissolve triacylglycerols without phospholipids, 
but together with near-critical dimethyl ether, it extracts both neu-
tral and polar lipids (Fletcher et al., 2006). Hexane is also a solvent 
that is occasionally used for lipid extraction (Shulman et al., 2011). 
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Phospholipids are acetone-insoluble, but triacylglycerols dissolves 
in acetone. This selectivity in solubility also provides an approach 
to purify milk phospholipids (Le et al., 2015; Zou et al., 2015).

To obtain a high purity of phospholipids, lactose and protein 
(casein and whey protein) need be isolated from lipids. Proteins 
can be denatured thermally or in acid solution (pH 4.6) (Ferreiro 
et al., 2016; Price et al., 2018), the aggregated particles are then 
sieved by subsequent filtration. Starting with whey protein phos-
pholipid concentrate, ethanol at 60–80 °C denatures proteins, re-
sulting in phospholipid concentration of ca. 45.8% in the filtrates 
(Price et al., 2018). Proteolysis is also a viable way to remove pro-
teins, in which whey and casein break into peptides and amino 
acids. Then the small molecules enter permeate after ultrafiltration 
(UF) or microfiltration (MF) operation (Barry et al., 2017; Konrad 
et al., 2013). Alcalase (E.E. 3.4.21.62), a serine type endoprotease 
with esterase activity, catalysed amino esters at pH 7.5 and 35–60 
°C (Barry et al., 2017), while tryptic and peptic hydrolysis may be 
carried out at 42 °C for 2–16 h, with pH at 7.7 and 2.0, respectively 
(Konrad et al., 2013). Lactose is a smaller molecule than lipid ant 
it also goes into permeate (Levin et al., 2016).

The process flow diagrams of industrial milk phospholipid man-
ufacturing are not available due to commercial confidence. How-
ever, according to previous research reports, a block diagram was 
proposed to illustrate the principle of typical industrial production 
processes of milk phospholipids (Figure 1). Starting from butter se-
rum or buttermilk, milk phospholipid concentrate can be refined by 
sequential unit operations of delactosing, deproteinising, and defat-
ting (Fletcher et al., 2006; Ireland, 2014; Zou et al., 2015).

Apart from the combined methods of solvents, filtration and 
centrifugation, milk phospholipids can be synthesized by using 
lecithin phosphatidylcholine and milk L-serine (WO2005027822). 
First, the choline group of soy PC is cleaved with Phospholipase 
D, and replaced with an L-serine group in the presence of calcium 
salt. The synthesized PS 20/60 (21 and 62% PS, respectively) can 
acquire an unpleasant taste and may become undrinkable. Thus, 

oil capsule was formulated to alter the flavor of PS. PS20/60 are 
physically unstable, and as they come from impure origin, these PS 
products (PS 20/60) were restricted by the public health authorities 
as described in WO2006-128465A1 (Table 1).

3.2. Available commercial products and related patents

Among the milk phospholipid portfolio of Fonterra Co-operative 
Group Ltd, Phospholac 600 consists of approximately 75% phos-
pholipid, representing one of the most concentrated milk phospho-
lipids in large-scale commercial products (Li, 2014). Its Phospho-
lac 500/600/700 and Gangolac 600 have a phospholipid content 
of 34, 70, 62, and 15%, respectively (Li, 2014; Thompson, 2005). 
Additionally, Arla Foods amba have commercialized a series of 
phospholipid rich dairy milk concentrated (PRDMC) products, 
including Lacprodan® MFGM 10 and Lacprodan® PL 20/75. 
Lacprodan® MFGM 10 has been claimed to support physiological 
development of infant gut and provide infants with similar phos-
pholipid benefits as breastfed infants because the fatty acid profile 
of Lacprodan® is similar to that of human milk (Sokol et al., 2015). 
In addition, PL 20 is made out of serum phase of butter oil product 
(AMF) with membrane filtration, yielding over 20% phospholipids 
in total solids, which is a pure-natural nutraceutical with properties 
that is not discovered in conventional phospholipid sources includ-
ing soy. PL 75 is a further ethanolic extract from PL 20, with 75% 
of phospholipids and protein-free. PL 20 and 75 targets infant milk 
formula and skin care, respectively (Arla, 2018).

As illustrated in Table 2, ethanol has frequently been used to ex-
tract milk lipids during industrial processes of manufacturing milk 
phospholipids. To further purify phospholipids, acetone (or dime-
thyl ether) is a common solvent to dissolve triacylglycerols. Most 
industrial milk products are generated from buttermilk (BM) and 
butter serum powder (BSP), except for some other origins such as 
whey protein concentrate (WPC) by Morinaga Milk Industrial Co 
Ltd. Tatua Co-operative Dairy Company produces a milk phospho-
lipid concentrate from beta serum powder, an aqueous dairy ingredi-
ent separated from dairy streams comprising more than 60% lipids 
which has been made by phase inversion from an oil-in-water to a 
water-in-oil dispersion (Tatua, 2018). For instance, Lipidex, a de-
rivative from beta serum powder by Synlait Milk Limited, contains 
5–7% phospholipids and 26.6% fat in total (Moukarzel, 2016). Bo-
vine milk SM (#860063, 25–200 mg) by Avanti has a purity of 99% 
(Lopez et al., 2014). Lecico Lipamine M20 comprises 20% of phos-
pholipids including sphingomyelin, ceramides and ganglioside. This 
product has been produced with a special membrane technology, 
which used only water without using other solvents (Lecico, 2018).

3.3. Analysis: sample preparation, fractionation and chroma-
tography

For analysis proposes, milk lipid samples are usually prepared 

Table 1.  Phospholipid composition of three typical dairy products

Product PL on product 
(g/100g)

PL on DM 
(g/100g)

PL on fat 
(g/100g)

Protein on 
product (g/100g)

Protein on 
DM (g/100g) Reference

Butter serum AMF 1.25 11.54 14.8–48.4 2.91 32.71 (Lopez et al., 2017; Smithers 
and Augustin, 2013)

Sweet buttermilk 0.16 2.03 4.49–33.1 3.31 32.95 (Smithers and Augustin, 2013)

Acid buttermilk whey 0.1 1.84 25.4 0.99 84.7 (Pimentel et al., 2016)

Figure 1. Block process flow diagram to illustrate a typical routine of milk 
phospholipid (PL) isolation and purification. 
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with solvent extraction. The Folch and Bligh extraction method 
using both chloroform and methanol, a common formula to dis-
solve milk lipids. Though dichloromethane (DCM, less toxic than 
chloroform) has recently been introduced to replace chloroform 
(Claumarchirant et al., 2016), the principal methods of lipid ex-
traction remain to be the Folch extraction (Bourlieua et al., 2018), 
the Bligh method (chloroform:methanol:water is 1:2:0.8, v/v/v) 
(Cheema et al., 2017) or the Röse-Gottlieb extraction of ammonia-
cal ethanolic solution of milk samples with diethyl ether and light 
petroleum (Barry et al., 2016; Ferreiro et al., 2016). Total lipids of 
samples may be measured using gravimetric determination, Ger-
ber-van Gulik butyrometer, infrared spectral method specified in 
International Dairy Federation (IDF) (Ferreiro et al., 2016), or gas 
chromatograph equipped with a flame ionization detector (FID) 
(Rodríguez-Alcal et al., 2015).

Milk phospholipid fractions are usually further purified by a 
solid-phase extraction (SPE) before a determination assay of phos-
pholipids and their subclasses, as illustrated in Table 3. Silica gel 
bonded cartridge is the most used SPE column to fractionate phos-
pholipids from neutral lipids. First, the column is conditioned with 
hexane, then it is eluted by hexane (C6) and diethyl-ether (DEE) 
mixture to separate triacylglycerols. After that, another elution 
with chloroform, methanol and water will bring phospholipids out 
of the SPE column, which will be collected for solvent evapora-
tion by using rotary evaporation. The final product (phospholipids) 
after solvent drying is stored at -20 °C before using (Haddadian et 
al., 2018). In addition, chloroform and methanol have been used 
as SPE conditioning and elution solvents (Walczak et al., 2016). 
Some SPE was performed with silica gel plate instead of silica gel 
bonded cartridges (Zou et al., 2015). Total phospholipids in milk 
samples can be determined by IDF molybdate assay (Vilamarim et 
al., 2018), Fourier transform infrared (FTIR) spectroscopy (Kala 
et al., 2018) or enzymatic method measuring the choline content 
(Shrestha et al., 2017).

Nuclear magnetic resonance (NMR) using 31P is a standard as-
say to quantify milk phospholipids and their subclasses (Hickey et 
al., 2017; Xu et al., 2015). However, chromatography is the more 
common assay to determine milk phospholipids. Thin layer chro-
matography (TLC) is a convenient assay without sophisticated 
instruments. A formula of TLC elution solvent mixture contain-
ing hexane, diethyl ether and acetic acid (80:20:1, v/v/v) has often 
been applied on a silica gel plate. The fractionated subclasses are 
then visualized on the plate with iodine vapor (Fuller et al., 2012; 
Zou et al., 2015).

High-performance liquid chromatography (HPLC) remains 
the most commonly used method, because it can accurately quan-
tify the total phospholipids and each of their subclasses than TLC. 
For each HPLC assay, 5–10 µL sample (approximately 5–100 μg/
mL) is the necessary amount to perform chromatographic analy-
sis (Cheema et al., 2017). As shown in Table 3, HPLC was usu-
ally coupled with such detectors as ultraviolet (UV) absorbance, 
evaporative light-scattering detector (ELSD) and mass spec-
troscopy (MS). Due to the polarity of milk phospholipid, silica 
column has often been used to separate the subclasses of milk 
phospholipids. To further fractionate the species of specified milk 
phospholipid subclasses, reverse phase (RP) HPLC with C18 col-
umn can be employed (Dugo et al., 2013). The binary solvents 
of chloroform and methanol or acetonitrile and ammonium ac-
etate are frequently used as an elution medium. The change of 
formula of elution solvents leads to the different detection order 
of phospholipid subclasses in the chromatogram, as illustrate in 
Table 3. In some cases, pH of mobile phase was modulated by 
trimethylamine or ammonia hydroxide (pH 3 and 6, respectively) 
and formic acid has shown benefits in providing a flat baseline 

(Ferreiro et al., 2014).

4. Vesicle properties

4.1. Liposomes

Milk phospholipid concentrate has good emulsification properties 
due to its amphiphilic molecular structure. Milk phospholipids can 
also be used to deliver nutraceuticals and bioactive compounds in 
food and bio-pharmaceutical industries, achieving better stabil-
ity, solubility and bioavailability of the encapsulate (Livney et al., 
2016). In a recent report, the vesicle properties of milk phospholip-
ids was thoroughly reviewed (Arranz and Corredig, 2017).

Milk phospholipids-based liposomes have been proven to de-
liver lipophilic or hydrophilic components to improve the bioavail-
ability of encapsulates, in either pharmaceutical or food industries. 
In the cosmetic area, liposomes have been used to facilitate dermal 
absorption of active compounds. Milk phospholipids-based li-
posomes have been applied to co-deliver beta-carotene within the 
membrane and ascorbic acid in the inner phase (Farhang, 2013). 
The complexing index increased when milk phospholipid concen-
tration was improved from 5 to 10%, then plateaued at 26 ± 0.5% 
when milk phospholipid concentration was 10–15%. The size of 
carriers was 120 ± 2 nm using micro-fluidization unit. Due to the 
limited physical stability, the produced liposomes aggregated and 
stratified in one day (Farhang et al., 2012). The liposome carriers 
based on milk phospholipids were shown in Table 4.

4.2. Phytosomes

As illustrated in Table 4, phytosome carrier can also deliver bi-
oactive compounds, both lipophilic and hydrophilic, in order to 
enhance oral bioavailability (Lu et al., 2018). Phytosomes are a 
durable complexes, with a simple manufacturing process (Gnana-
nath et al., 2017). Complexing reaction of milk phospholipids and 
encapsulate (molecular ratio 1–5) was realized in either ethanolic 
or methanolic solution of 55°C. As a result, the bioavailability of 
encapsulate was enhanced by 3–5-fold (Freaga et al., 2018; Yu et 
al., 2016), while the solubility of 36-fold increase was evidenced 
(Telange et al., 2017).

Both milk phytosomes and liposomes are derived from milk 
phospholipids. Liposomes encapsulate bioactive compounds in 
either the core of phospholipid globule or in the phospholipid bi-
layer, whereas phytosomes are different from liposomes because 
phospholipids conjugate with encapsulates, hence they are more 
durable and efficient than liposomes (Karimi et al., 2015). Current-
ly, the milk phospholipid-based phytosomes are not yet explored, 
and it should provide a prospective area to study.

4.3. Gastrointestinal digestion and absorption

Milk phospholipids do not hydrolysis in lingual and gastric tract, 
thereby they can be carriers of bioactive compounds (Castro-
Gómez et al., 2015). Their digestion occurs in lumen, the upper 
part of intestinal gut. Phospholipase A/B/C/D acts on either sn-1 or 
2 acyl (A), both sn-1 and 2 acryl (B), sn-3 phosphoric base (C) and 
sn-3 polar head (D), respectively (Gurr et al., 2002)). In human be-
ing, pancreatic phospholipase A2 (EC 3.1.1.4 (Venuti et al., 2017)) 
can act upon sn-2 position of phospholipids, resulting in lysophos-
pholipids and fatty acids. The fatty acid group of lysphopholipids 
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can be further cleaved by lysophospholiase (EC 3.1.1.5) (Winrow 
et al., 2003). Moreover, the pancreatic lysophospholipase of human 
being is most likely non-specific phospholipase, but carboxyl ester 
hydrolase (EC 3.1.1.1) (Duan and Borgström, 1993). In addition, 
sphingomyelinase (alk-SMase, EC 3.1.4.12) acts on phosphoric 
di-ester bond of sphingomyelin, generating ceramide and phospho-
choline (Nilsson and Duan, 2019). Ceramide will be further split 
by mucosal ceramidase (N-CDase EC 3.5.1.23) (Mao and Obeid, 
2008). The lipolysis products then cross the border of epithelial 
cells (mucosa) and enter the enterocyte to synthesize new phospho-
lipids, which are then incorporated into chylomicrons (CM). After 
that, in approximately five hours postprandial, CM will enter into 
the lymph and blood circulation. Apart from absorption of hydro-
lysate of phospholipids (lyso-PLs and fatty acids), approximately 
20% of phospholipids are passively absorbed in the intestinal lu-
men (Castro-Gómez et al., 2015). In addition, indigenous phospho-
lipid excretion into bile is 10–20 g per day (Cohn et al., 2010), 
which was much higher than endogenous phospholipids (2–8 g 
phospholipid ingestion per day) (Lecomte et al., 2015). Therefore, 
phospholipids are not essential lipids though they are critical.

5. Health impacts

The nutraceutical value of milk polar lipids has previously been 
reviewed, including the efficacy for modification of the trajectory 
recession of cerebral structure in old age (Reddan et al., 2018), 
the roles in the growth of infant brain and gut (Ortega-Anaya and 
Jimenez-Flores, 2018), the effects of immune-mediated anti-car-
cinogenic effects and anti-inflammatory activity (Verardo et al., 
2017), and the relevance to hepatoprotection and cardiovascular 
diseases (Castro-Gómez et al., 2015). Moreover, milk phospho-
lipids consequently reduced the waist circumference of the par-
ticipants in this trial, compared with soy lecithin in a clinical trial, 
although the blood lipid concentrations of the attendants in the 
trial was not altered (Weiland et al., 2016). In addition, the effects 
of Lacprodan® PL-20 on supporting infant intestinal maturation 
(Arla, 2019) and a healthy microbiota (Nejrup et al., 2017) have 
been clinically demonstrated. Furthermore, buttermilk and krill oil 
phospholipids were associated with the improvement of synaptic 

signalling in aged rats (Tomé-Carneiro et al., 2018).

5.1. Neurocognitive effects

The nutritional value of milk polar lipids includes gut development 
(SM), neurocognitive development (SM), liver protection (PC), 
bacteria inhabitation (lyso-phospholipids), maintaining homeo-
stasis (PE), cell signalling (PI) and memory restoration (PS), as 
reviewed in previous reports (Gallier et al., 2014; Le et al., 2014; 
Le et al., 2015). It has been documented that milk phospholipids 
can enhance the neurocognitive development in the trials. For ex-
ample, the research has shown that sphingolipid supplementation 
improved the myelination of central nervous system and was re-
sponsible for the normal brain weight of rat infants (Castro-Gómez 
et al., 2015). L-serine is essential for the synthesis of sphingolipids 
and phosphatidylserine (PS) in particular types of central nervous 
system neurons (Hirabayashi and Furuya, 2008). Additionally, the 
cognitive performance benefits of dietary milk phospholipid have 
been evidenced with the clinical trial (Boyle et al., 2019), the rats 
model (Schipper et al., 2016), and the piglet model as well (Liu et 
al., 2014).

Present results appertaining the cognitive functions of milk 
phospholipids, from either ex vivo models or in vivo models are il-
lustrated in Table 5. Most tests conferred the benefits of milk phos-
pholipids on brain function, however one examination showed that 
it might be due to the combined effects of membrane proteins and 
polar lipids (Timby et al., 2014). In terms of commercial applica-
tion, milk phospholipids are well-recognized ingredients for infant 
milk formula (IMF), which represent the world’s fastest growing 
functional food in recent years (Ireland, 2014).

5.2. Skin care

Skin parameter enhancement examination has been performed in 
both in vivo and ex vivo, yielding positive results except for a non-
effectiveness report under the set conditions (Keller et al., 2014), 
as illustrated in Table 5. Some of these benefits appear to be related 
to phospholipids, altering the hydration of skin and therefore in-
creasing elasticity and resilience.

Table 4.  Milk phytosomes and liposomes as bioactive compound carriers

Encapsulate Phospholipid Vesicle Bioavailability Reference

Celastrol (CST) Soy PC Phytosomes 4–5-fold increase (Freaga et al., 2018)

Apigenin Soy PC Phytosomes Up to 82% (Telange et al., 2017)

Berberine (BER) Soy PC Phytosomes 3-fold increase (Yu et al., 2016)

18β-glycyrrhetinic acid Soy lecithin Phytosomes Extended storage to 30–90 days (Djekic et al., 2016)

Curcumin Milk PL Liposomes: Sonication More efficient and stable 
than soy lecithin

(Jin et al., 2016)

Lactoferrin (LF) Milk PL Liposomes: Ethanol 
injection

Gastric stable and slow 
intestinal hydrolysis

(Liu et al., 2013)

Tea phenolic Milk PL Liposomes: Micro-
fluidization

More efficient than soy lecithin (Gulseren and Corredig, 2013)

β-carotene and 
ascorbic acid

Milk PL Liposomes Micro-
fluidization

Poor physical stability 
upon storage

(Farhang, 2013)

Silybin Milk PL Reverse phase 
evaporation (RPE)

10-fold increase (Siegel et al., 2014)
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5.3. Anti-inflammatory in gastrointestinal development

Milk phospholipids have proven to be able to modulate inflam-
matory reaction and to protect against gastrointestinal leakiness, 
as illustrated in Table 5. Animal models and cell models have 
shown that the polar lipids fraction from MFGM affects infant 
gastrointestinal development. Milk phospholipids diet decreased 
gut permeability (Snow et al., 2010), altered distal gut microbiota 
and reduced serum lipopolysaccharide (LPS) (Norris et al., 2016), 
inhibit infectivity of rotavirus (Fuller et al., 2012), and regulate 
the neonatal gut microbiome and promote intestinal development 
(Bhinder et al., 2017).

5.4. Antioxidant activity

Milk phospholipids act as both antioxidants and a pro-oxidants 
and sometimes are used to alleviate food oxidation. Anti-oxidative 
activity of phospholipids might be due to such mechanisms as met-
al-chelation, alteration of the location of other antioxidants, and 
regeneration of other primary antioxidants. However, phospholip-
ids can also act as primary antioxidants and pose significant anti-
oxidant activity to biological membranes (i.e. meats), owning to 
their unsaturated fatty acids and negative charge (Cui and Decker, 
2016). Phospholipid supplementation to soybean oil significantly 
retarded the oxidative process, extending oxidative stability index 
(OSI) from 7.62 to 12.96 h. However, phosphatidylcholine addi-
tion caused trimethylamine (TMA, fishy off-odor) generation (Ji-
ang et al., 2016). Marine lecithin (i.e. krill oil) consists of a natu-
ral antioxidant (astaxantin) and phospholipids bound LC-PUFA, 
which inhibits oil peroxidation during its shelf life (Ben-Dror et 
al., 2018). Αlpha-tocopherol enhanced the oxidative stability of 
marine phospholipid emulsions (Lu, 2013).

6. Conclusion

In this review, milk vesicle properties and health impacts were ad-
dressed. As an emerging material of vesicles in nutraceutical and 
bio-pharmaceutical, milk phospholipids show advantages over 
lecithin of soy and egg yolk in encapsulation efficiency. Recently, 
various kinds of liposomes have been fabricated for enhancing the 
solubility and bioavailability of encapsulates. Phytosomes, more 
stable carriers than liposomes, should provide a further area to 
study. In recent reports, milk phospholipids have been proven to 
support cognitive development owning to their balanced distribu-
tion in phosphatidylserine and sphingomyelin, which was almost 
absent in soy and egg yolk lecithin. Apart from brain function, 
milk phospholipids have a role in skin care, due to their more satu-
rated fatty acids, which lead to milky-white color and stability.

In conclusion, milk phospholipids have prospective applica-
tions in nutritional delivery, infant formula and cosmetic for their 
vesicle properties and biological functionalities. As potential al-
ternatives to traditional polar lipids from egg yolk and soy, milk 
phospholipids need to be efficiently produced in large-scale. Etha-
nolic extraction remains the most used lipid extraction process in 
dairy industry. Defat with supercritical carbon dioxide or acetone 
are frequently used to further refine phospholipids from lipids.
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