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Abstract

The functional food, bioactive ingredients and nutraceutical industries are focused primarily on developing and 
validating the bioactivity of their products. Furthermore, the scientific community is pretty much moving in the 
same direction. A quick search in the literature demonstrates that phenolic compounds are perhaps the most 
studied bioactive phytochemicals due to their myriad of health benefits, including antioxidant and anti-inflam-
matory effects. In fact, due to their role in preventing cardiovascular disease, certain types of cancer, and enzyme 
inhibition in connection with type 2 diabetes and obesity, phenolic compounds are gaining attention of the indus-
try. However, many phenolic compounds can influence the sensory characteristics of the final product and hence 
consumer acceptance must be considered. Therefore, in this contribution we summarize the potential sensory 
effects of phenolic compounds by focusing on their structuctural features.
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Industrial food products should be sensorially accepted by con-
sumers and demonstrate satisfactory shelf-life. Therefore, devel-
opment of a functional or enriched food should also consider these 
aspects (de Toledo et al. 2018). An unexpected food color may be 
the first attribute related to consumers’ rejection (de Camargo et 
al., 2014). Anthocyanins, which are present in high concentrations 
in several by-products (Ayoub et al. 2016; Garcia-Mendoza et al., 
2017; He et al., 2016; Leite-Legatti et al., 2012), are especially 
susceptible to pH changes. Therefore, besides the expected color 
effect from food fortification, pH changes in the medium may also 
change the color of anthocyanins present in plant food by-products 
or their extracts. For example, the appearance and color have been 
found to be affected by incorporation of peanut skin in peanut but-
ter (Sanders III et al., 2014).

The characteristic bitter taste of several phenolic compounds 
raises a dilemma for the designers of functional foods because 
their fortification with plant food by-products, which are rich in 

these phytochemicals and/or nutrients, may be incompatible with 
consumer acceptance (Drewnowski and Gomez-Carneros, 2000). 
Quercetin has been reported to affect the bitterness of food products 
more than rutin (Suzuki et al., 2015). In the presence of rutinosi-
dase, rutin may be hydrolyzed and generate quercetin and rutinose 
as final products. Chlorogenic acid lactones, known contributors 
to coffee bitterness, can also be hydrolyzed by esterases (Krae-
henbuehl et al., 2017), thus decreasing their effect on bitterness. 
Likewise, beta-glucosidase may hydrolyze conjugate isoflavones 
and liberate their corresponding aglycones (Handa et al., 2014). 
Furthermore, several phenolics originating via the action of enzy-
matic (yeast mediated) and chemical reactions during winemaking 
may also be present in their corresponding by-products (Barcia 
et al., 2014). As a consequence, the sensory changes in fortified 
products may not be necessarily attributed to the parent compound 
(e.g. rutin, conjugated isoflavones, chlorogenic acid lactones) but 
to their hydrolyzed products. Therefore, a full scan of the phenolic 
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profile in the final product subjected to fortification is always rec-
ommended rather than just monitoring specific compounds.

Bitter taste has been reported in the use of certain plant by-
products with high proanthocyanidins contents (de Camargo et 
al., 2014). Highly polymerized proanthocyanidins exhibit greater 
reactivity towards salivary proteins thus inducing their precipita-
tion and conferring a more pronounced astringency than that of 
the lower degrees of polymerization (Sarni-Manchado et al., 1999; 
Sun et al., 2013). Molecular size has been found to be the major 
factor affecting bitterness and astringency of tannin-containing 
products (Peleg et al., 1999). Taste receptor cells are characterized 
by the expression of members of the TASTE 2 Receptor (TAS2R) 
gene family encoding bitter taste receptors (Soares et al., 2013). 
According to these latter authors, the EC50 to activate the bitter 
receptor TAS2R5 of epicatechin was ∼1,000-fold higher than that 
of procyanidin trimer when both tannins (pentagalloylglucose and 
procyanidin trimer) were present in the same micromolar range. 
Furthermore, the presence of catechol or galloyl group was a criti-
cal feature (but not essential) for the interaction of polyphenol 
compounds with TAS2R5. Roland et al. (2011) also evaluated the 
sensory effect of isoflavones towards human bitter taste receptors 
and showed that equol and coumestrol were more bitter than most 
of the common soybean isoflavones.

Finally, according to the literature (Chillo et al., 2008), especial-
ly for the overall quality, spaghetti samples with added buckwheat 
flour and durum wheat bran, rich in phenolic acids, showed senso-
rial properties fairly similar to the spaghetti made only of durum 
semolina, thus demonstrating that a good formulation can over-
come the potential detrimental sensory effects in food fortification. 
The same principle should be considered for the use of phenolics 
from plant food by-products when attempting to prevent oxidation 
in food systems. This would most likely be dependent on the struc-
tural characteristics of the phenolic compounds present and their 
required concentration to achieve the set goals in the formulation 
of the final product.
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