

Correction J. Food Bioact. 2021;14:126–127

Correction: *In-vitro* antidiabetic activities, chemical compositions, antioxidant activities, and toxicity of black tea polysaccharides as a potential source of dietary ingredients

Ebru Pelvan^a, Ayse Karadag^b, Kubra Dogan^b, Soner Aksu^c, Arzu Tas^c, Kubra Akalın^d, Özlem Atlı Eklioğlu^e and Cesarettin Alasalvar^{a*}

^aTÜBİTAK Marmara Research Center, Food Institute, P.O Box 21, 41470 Gebze-Kocaeli, Turkey

^bDepartment of Food Engineering, Yıldız Technical University, 34210 Esenler-Istanbul, Turkey

^cTÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, P.O Box 21, 41470 Gebze-Kocaeli, Turkey ^dDepartment of Molecular Biology and Genetics, Institute of Science and Technology, Gebze Technical University, 41400 Gebze-Kocaeli,

Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu University, 26470 Tepebaşı-Eskişehir, Turkey

*Corresponding author: Cesarettin Alasalvar, TÜBİTAK Marmara Research Center, Food Institute, P.O Box 21, 41470 Gebze-Kocaeli, Turkey. E-mail: cesarettin.alasalvar@tubitak.gov.tr

DOI: 10.31665/JFB.2021.14275

Received: April 15, 2021; Revised received & accepted: April 16, 2021

Citation: Pelvan, E., Karadag, A., Dogan, K., Aksu, S., Tas, A., Akalın, K., Eklioğlu, Ö.A., and Alasalvar, C. (2021). Correction: *In-vitro* antidiabetic activities, chemical compositions, antioxidant activities, and toxicity of black tea polysaccharides as a potential source of dietary ingredients. J. Food Bioact. 14: 126–127.

There is an error in Table 2 in the published article, Journal of Food Bioactives, 2021;13:93–101, doi: 10.31665/JFB.2021.13263. The correct value in column "mg/100 g" under "D-glucose" is " 59.50 ± 7.80 ", not " 9.50 ± 7.80 ". The authors have included a corrected version of the table below.

Table 2. Monosaccharide, amino acid, and mineral compositions of BTPS

Monosaccharides	mol ratio (%)	Amino acids	mg/100 g	Minerals	mg/100 g
D-mannose	2.38 ± 0.02	Aspartic acid	446 ± 86	Calcium	41.2 ± 1.7
D-ribose	2.72 ± 0.02	Alanine	114 ± 11	Chromium	0.78 ± 0.0
L-rhamnose	2.86 ± 0.03	Arginine	89.5 ± 12	Copper	1.37 ± 0.0
D-glucuronic	2.46 ± 1.01	Glutamic acid	822 ± 11	Iron	9.8 ± 0.2
D-galacturonic	2.89 ± 1.02	Glycine	337 ± 60	Magnesium	815 ± 27
D-glucose	7.00 ± 0.07	Histidine	59.50 ± 7.80	Manganese	423 ± 4
D-galactose	47.5 ± 0.5	Isoleucine	nd	Phosphorus	1,970 ± 50
D-xylose	1.89 ± 0.02	Leucine	54.5 ± 3.5	Potassium	9,155 ± 47
D-arabinose	28.5 ± 0.3	Lysine	182 ± 12	Sodium	15.3 ± 0.8
L-fucose	1.45 ± 0.08	Methionine	nd	Zinc	6.22 ± 0.20
		Proline	85.0 ± 9.9		
		Phenylalanine	20.0 ± 4.2		
		Serine	144 ± 12		
		Threonine	67.0 ± 0.0		
		Tyrosine	40.0 ± 14.1		
		Valine	37.5 ± 3.5		
		Total	2,498 ± 1		

Data are expressed as the mean \pm SD (n = 3). Abbreviation: nd, not detected.