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Abstract

The stilbenoids form a group of bioactive phenolic compounds found in various plant species whose original 
functions are to act as protective compounds against microbial infections and toxins. Among the stilbenoids, 
resveratrol is the most well-studied and has been shown to exert multiple benefits in disease prevention. The bio-
availability of resveratrol is one of the major limitations in its role as a disease-prevention agent; however, it has 
exhibited biological activity in animals and clinical models. Gut microbiota may play a role in overcoming limited 
bioavailability via microbial transformations. On the other hand, the modulatory effects of stilbenoids on gut 
microbial dysbiosis induced by several diseases can be crucial in disease alleviation. In addition to gut microbial 
metabolites, such as SCFAs (short-chain fatty acids), stilbenoids can be used to inhibit microbial growth, making 
their use a potential strategy in preventing disease progression. In this review, the interactions of stilbenoids (with 
a major focus on resveratrol and pterostilbene) and gut microbiota will be discussed to clarify the importance of 
gut microbiota in the strategy of “disease prevention via phytochemicals.”

Keywords: Stilbenoids; Resveratrol; Pterostilbene; Gut microbiota.

1. Introduction

The term “bioavailability” defines the potential and percentage of 
the administered substance, i.e., the uptake dose of the substance, 
be it a drug or xenobiotic, that finally reaches the circulation sys-
tem of a living organism (Nikinmaa, 2014). Generally, the bio-
availability of a substance administrated intravenously is practi-
cally 100% (F  =  1), while those substances administered orally or 
through dietary intake may have much lower bioavailability (F < 
1) due to several issues, including incomplete absorption, polarity 
of the substances, and the possibility of the target substance be-

ing metabolized (known as the first-pass effect) (Hinderliter and 
Saghir, 2014; Waller and Sampson, 2018). Bioavailability is one 
of the major concerns when considering dietary phytochemicals 
as strategies for achieving health benefits. However, phytochemi-
cals are normally transient due to their low bioavailability, mean-
ing that the concentration of the parent compound could be low 
in the circulatory system (Selby-Pham et al., 2017). Consumption 
of phytochemicals in the diet can reach up to several grams, but 
the concentration of the final fraction absorbed and circulated 
in body may be much lower than expected (Martel et al., 2020). 
Therefore, the efficacy of phytochemicals in the amelioration of 
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several diseases could be the result of the phytochemical itself or 
its derivatives, metabolites produced in the liver or colon tissue, or 
microbial metabolites.

According to the latest definition, polyphenols can be cat-
egorized as prebiotic-like components via their influence on gut 
microbiota, including the stimulation of beneficial gut microbes, 
which leads to beneficial microbial metabolite production, bal-
ances the gut ecosystem, and protects the organism from patho-
gens, resulting in host health benefits (Peng et al., 2020). The 
beneficial outcomes for gut microflora under optimal conditions 
may include lowering blood ammonia, modulating immune re-
sponses, and reducing cancer risks (Manning and Gibson, 2004). 
The relationship between gut microbiota and phytochemicals, 
such as polyphenols, permits substituting conjugates, hydrolysis, 
reduction, and cleavage or degradation; therefore, the presence of 
metabolites in plasma can be extended beyond that of the parent 
compounds (Carrera-Quintanar et al., 2018). It is possible that the 
catabolism of polyphenols by gut microbes could release metab-
olites or derivatives with better bioactive effects and absorption 
(Simó and García-Cañas, 2020). Intervention via phytochemicals 
may produce multi-benefits for gut health, including: (1) enrich-
ment of beneficial bacteria, (2) inhibited growth or reduced levels 
of opportunistic bacteria, (3) facilitated growth of short-chain fatty 
acid (SCFA) producers that metabolize bile acids, (4) inhibited di-
gestive enzymes, and (5) enhanced colonic tight junctions (Martel 
et al., 2020). In this review, we focus on the regulatory effects of 
resveratrol and pterostilbene on gut microbiota and the potential 
benefits for the host in terms of health and disease prevention.

2. Resveratrol potentially interacts with gut microbiota to im-
prove host health

The benefits of resveratrol (Figure 1) with regard to gut health has 

been recently revealed by Chen et al., who showed that resvera-
trol plays multiple roles, including enhancing the intestinal barrier 
(upregulating occludin, ZO1, claudin1), inhibiting inflammation, 
and attenuating gut microbial dysbiosis (Chen et al., 2020). Among 
the gut microbes, Akkermansia muciniphila, Ruminococcaceae, 
and Lachnospiraceae were enhanced, while Desulfovibrio growth 
was inhibited. In an in vitro study using M-SHIME® to investigate 
the changes in the gut microbiota of a female volunteer, it was re-
vealed that the amount of Enterobacteriaceae was increased via the 
administration of an extract containing resveratrol (Giuliani et al., 
2016). Therefore, resveratrol could have a regulative effect on gut 
microbiota. Thus, the effect of resveratrol on gut microbial modu-
lation will be discussed (Tables 1 and 2).

Using combinations of phytochemicals in disease amelioration 
has become a trend, as doing so follows the concept of precise pre-
vention. Additionally, different compounds may not share the same 
targets. Early in 2015, it was revealed that, compared to quercetin, 
trans-resveratrol could scarcely modify the gut bacteria profile and 
more likely contributes to the mRNA expression of tight-junction 
related proteins and inflammation-associated genes (Etxeberria et 
al., 2015). As phytochemicals with low bioavailability, resveratrol 
and quercetin surprisingly showed distinct effects on gut health. 
Yang et al. demonstrated that resveratrol showed a positive effect 
on controlling blood glucose and increasing HDL-c levels, while 
sinapic acid exhibited alleviative effects on oxidative stress, TGs 
(triglycerides), and NEFAs (non-esterified fatty acids) in plasma. 
The authors revealed that a combination of the two could suppress 
the growth of disease-related species, such as Bacteroides and 
Desulfovibrionaceae sp, and increase the abundance of the genera 
Blautia and Dorea from the family Lachnospiraceae (Yang et al., 
2019). These results showed that combinations of phytochemicals 
could have beneficial or even synergistic effects on disease preven-
tion. However, Sreng et al. suggested that the glycemic regulative 
effect of resveratrol could be blunted by curcumin, thus indicating 
that it is possible for a phytochemical to have an antagonistic ef-

Figure 1. Resveratrol and its analogues found naturally in plants. (a) Resveratrol, (b) pinostilbene, (c) pterostilbene, (d) oxyresveratrol, (e) piceatannol, (f) 
thunalbene, and (g) batatasin III.
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fect. In gut microbiota analyses, it has been suggested that some 
bacterial taxons correlate to the glycemic index, including S47-
7 (family) and Lactobacillus and Prevotella (genes), which have 
negative correlations, as well as Peptococcaceae (family) and Mu-
cisporollum schaedleri, which positively correlate with the glyce-
mic index. In comparison, both resveratrol and curcumin alone led 
to changes in microbial composition. However, the reversed effect 
of resveratrol, in terms of reducing Alistipes and Clostridium XI 
was masked when combining with curcumin (Sreng et al., 2019). 
Therefore, care should be taken in combining phytochemicals as a 
strategy for disease prevention.

Zheng et al. suggested that dietary supplementation with res-
veratrol significantly enriched bacteria of the phylum Firmicutes in 
farmed tilapia (Zheng et al., 2018). Moreover, the resveratrol sup-
plemented microbiota were dominated by Proteobacteria, Firmi-
cutes, and Cyanobacteria, with increases in Acetobacteraceae and 
Methylobacteriaceae and reductions in Streptococcaceae. In anoth-
er study, the high-fat diet (HFD)-induced nonalcoholic fatty liver 
disease (NAFLD) in a mouse model suggests that supplementation 
with resveratrol could modulate gut microbial composition, in-
cluding decreasing Lachnospiraceae_NK4A316_group, Alistipis, 
and Desulfovibrio concomitant with increases in the abundance of 
SCFA-producing bacteria, namely, Allovaculum, Bacteroides, and 
Blautia (Wang et al., 2020). Moreover, transplantation of the fecal 
microbiota of resveratrol-supplemented mice into HFD-induced 
mice could significantly prevent obesity, NAFLD, and inflamma-
tion, indicating that resveratrol-modified gut microbiota could po-
tentially prevent obesity-related diseases induced by HFD. A study 
by Yin et al. obtained a similar result in that it revealed that trans-
plantation of fecal microbiota from mice fed a chow diet supple-
mented with resveratrol could both ameliorate the hepatic steatosis 
and reverse the gut microbiota dysbiosis in mice fed a HFD (Yin 
et al., 2020). The Firmicutes/Bacteriodetes (F/B) ratio of the fe-
cal microbiota for FMT (fecal microbiota transplant) was reversed 
and showed no significant difference from the ratios for mice fed 
a chow diet or a chow diet supplemented with resveratrol. In a 
HFD/high sucrose induced diabetes model in mice, it was revealed 
that obesity and glucose homeostasis dysregulation was amelio-
rated by oral administration of resveratrol, and it might be related 
to decreases in Turicibacteraceae, Lachnospiraceae, Moryella, and 
Akkermansia and increases in Bacteroides and Parabacteroides 
(Sung et al., 2017). The FMT model was also employed to confirm 
that gut microbiota from resveratrol-supplemented donors could 
improve glucose homeostasis of mice.

In summary, a HFD can lead to gut microbial dysbiosis and a 
deterioration in the host’s metabolism. In 2020, Huang et al. re-
vealed that resveratrol was capable of improving the microbial-
dysbiosis-damaged metabolisms of offspring induced by HFD 
exposure during maternal and postnatal diet intake (Huang et al., 
2020). In terms of the SCFA levels, maternal and postnatal HFD 
exposure led to reductions in the plasma SCFA concentration, 
while supplementation with resveratrol increased propionate lev-
els in offspring in both situations. In the microbial analysis, it was 
found that lactate-producing bacteria had decreased in the early life 
of offspring due to maternal exposure to HFD. In adulthood, both 
maternal and postnatal HFD exposure sharply increased the F/B 
ratio (up to 10-fold) compared to a control group. Fortunately, the 
changes were reversed by supplementation with resveratrol, which 
was reflected in the increases in Bacteroidetes and Cyanobacteria 
and decreases in Tenericutes. The modulation of resveratrol also 
occurred at the genus level, as indicated by the decrease in the 
Akkermansia level. In 2019, the same research team demonstrated 
that resveratrol exhibited a preventive effect on programmed hy-
pertension and gut microbiota (Chen et al., 2019). In the study, 

treatment with L-NAME (NG-nitro-L-arginine-methyl ester) com-
bined with a HFD led to hypertension and an increased F/B ratio. 
However, supplementation with resveratrol prevented both out-
comes as well increased Akkermansia, which is from the phylum 
Verrucomicrobia. Therefore, resveratrol had a positive impact on 
gut microbiota regulation, which altered metabolic dysregulation 
and lowered hypertension.

In addition to metabolic syndromes, other diseases may be cor-
related to gut microbial composition. For instance, temporoman-
dibular disorder, a neurological disease that results in chronic pain, 
was found to have a possible pathogenesis caused by disturbances 
in the gut microbiota (Ma et al., 2020). In the study, a complete 
Freund’s adjuvant was injected at the intra-temporomandibular 
joint, and a reduction in SCFA production was observed. Surpris-
ingly, the disturbance was diminished by resveratrol, concomitant 
with increased SCFA levels. In the study of 2,4,6-trinitrobenze-
nesulfonic acid (TNBS)-induced colitis in mice, resveratrol not 
only attenuated colonic inflammation but the homeostatic levels 
of gut microbes recovered (Hijona et al., 2016). Additionally, bac-
teroides acidfaciens induced by TNBS was significantly reduced, 
while Ruminococcus gnavus and Akkermansia muciniphila were 
significantly induced, concomitant with acetic and butyric acid 
concentrations (Alrafas et al., 2019).

As a phytochemical with low bioavailability, the reason as to 
why resveratrol is capable of effectively ameliorating several dis-
eases in the body has not been clearly elucidated. However, it is 
believed that the modification of the gut microbial composition 
in recent studies could supply a partial reason. Changes in gut 
microbes via resveratrol supplementation may lead to potential 
benefits to the host in disease amelioration, especially in terms of 
obesity-related syndromes. Nevertheless, the underlying details 
still need to be clarified.

3. The role of pterostilbene in modulating gut microbiota to 
produce a host health benefit

Compared to resveratrol, the bioavailability of pterostilbene (Fig-
ure 1) is much higher, but complete absorption is impossible. 
Therefore, the interaction between pterostilbene and gut microbio-
ta should not be overlooked. However, studies focusing on interac-
tions between pterostilbene and gut microbiota have not been as 
well-clarified as those involving resveratrol. Therefore, in this sec-
tion, the anti-microbial effects of pterostilbene will be discussed to 
postulate the potential of pterostilbene in gut microbial modulation 
(Tables 1 and 2).

In a study involving Zucker rats fed either a standard diet or 
a pterostilbene-supplemented diet, it was found that pterostilbene 
not only exerted anti-obesity effects but also re-structured gut 
microbial composition (Etxeberria et al., 2017). In particular, a 
reduction in the abundance of Firmicutes and an increase in the 
phylum Verrucomicrobia was observed. Akkermandia muciniphila 
and Odoribacter splanchnicus (members of Verrucomicrobia and 
Bacteroidetes, respectively) were found to increase in abundance 
in the supplemented group. The former was found to be inversely 
correlated with obesity, while the latter was negatively correlated 
with adiposity. In addition to obesity, the incidence of cardiovas-
cular disease is also highly related to the composition of gut mi-
crobiota, as the role of gut microbiota in the conversion of carni-
tine to trimethylamine has been clarified recent years (Simó and 
García-Cañas, 2020). In the aforementioned study, the abundance 
of Turicibacter from Erysipelotrichia (family) was significantly 
increased in the carnitine group, while pterostilbene supplementa-
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tion led to its reduction and increased Bacteroides. In comparison, 
resveratrol exhibited a similar effect, mainly on gut microbiota 
remodeling to prevent the production of trimethylamine-N-oxide 
(TMAO) from trimethylamine (TMA) (Chen et al., 2016). The in-
creased abundance of Lactobacillus and Bifidobacterium might be 
closely related to bile salt hydrolase activity and bile acid decon-
jugation.

The secretion of stilbenoids occurs naturally in some plants 
as protection against infections; therefore, most of them could 
exhibit anti-microbial effects (Akinwumi et al., 2018). Inhibit-
ing the growth of pathogenic or disease-related microbes is one 
of the strategies used in disease prevention. In fact, the antibacte-
rial and antifungal properties of resveratrol have been reviewed 
by Vestergaard and Ingmer (Vestergaard and Ingmer, 2019). 
Therefore, the inhibition of adverse gut microbial growth could 
be a potential strategy in gut microbial re-composition. Mattio et 
al. suggested that among resveratrol and its derived monomers, 
pterostilbene showed significant anti-bacterial capabilities against 
gram-positive foodborne pathogens (Mattio et al., 2019). In 2017, 
Yang et al. demonstrated that pterostilbene exhibited anti-bacterial 
effects against Staphylococcus aureus, which is resistant to methi-
cillin, and was even more efficient than resveratrol (Yang et al., 
2017). The capability of Staphylococcus aureus to form biofilms 
was eradicated by pterostilbene, thus highly reducing its resist-
ance to antibiotics and immune cells. In 2020, a similar result was 
observed in that pterostilbene was able to inhibit the growth and 
formation of Staphylococcus epidermidis, and more importantly, 
the pterostilbene-enhanced anti-microbial activity of antibiotics, 
including erythromycin and tetracycline (Kašparová et al., 2020). 
The enhanced effects of pterostilbene on antibiotics were also ob-
served in combination with gentamicin, as they synergistically 
inhibited Staphylococcus aureus ATCC 25923, Escherichia coli 
O157, and Pseudomonas aeruginosa 15442 (Lee et al., 2017).

Supplementation of pterostilbene is not as well-studied as sup-

plementation with resveratrol. However, pterostilbene’s anti-mi-
crobial abilities indicate its high potential to prevent pathogenic 
microbial diseases and inhibit the growth of adverse gut microbes, 
resulting in gut health improvement. Therefore, more research is 
required to ensure its beneficial properties related to the gut.

4. The role of gut microbiota in the conversion of stilbenoids in 
terms of their bioactivity

As mentioned above, it is believed that interactions between phy-
tochemicals and gut microbiota may reflect metabolite production, 
derivatives (Figures 1 and 2), and gut microbial composition. In 
a moderate long-term (28-day) consumption of red wine or deal-
coholized red wine study involving humans, up to 21 metabolites 
of resveratrol were identified in urine, and it was suggested that 
some of them were gut microbial-derived metabolites, although 
no further analyses took place (Rotches-Ribalta et al., 2012). To 
be more specific, dihydroresveratrol was the most prevalent gut 
microbial metabolite, followed by 3,4′-dihydroxy-trans-stilbene 
and lunularin. Dihydroresveratrol was found to be produced by 
Slackia equolifaciens and Adlercreutzia equolifaciens, while the 
production of lunularin was related to the increased abundance of 
Bacteroidetes, Actinobacter, Verrucomicrobia, and Cyanobacteria 
(Bode et al., 2013).

In 2019, Jarosova et al. observed the metabolic transformation 
of six stilbenoids (resveratrol, oxyresveratrol, piceatannol, thunal-
bene, batatasin III, and pinostilbene) by using a fecal fermentation 
system, with fresh feces supplied by five donors (Jarosova et al., 
2019). Among the selected stilbenoids, the following conversions 
were observed: resveratrol into dihydroresveratrol, oxyresveratrol 
into 2′3,4′,5-tetrahydroxybibenzyl, and thunalbene into isoresvera-
trol. The metabolites of piceatannol found in this in vitro study 
included dihydropiceatannol, and 3,3′4′-trihydroxystilbene, or 

Figure 2. Potential metabolites or derivatives of the stilbenoids depicted in Figure 1 formed via gut microbial transformation. (a) Resveratrol, natural 
compound provided for structural comparison; (b) dihydroresveratrol; (c) 3,4′-dihydroxy-trans-stilbene; (d) lunularin, (e) isoresveratrol; (f) 3,3′,4′-trihydrox-
ystilbene or 3′,4′,5-trihydroxystilbene; and (g) 3,3′,4′-trihydroxybibenzyl.
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3′4′5-trihydroxystilbene, and the latter compounds could be fur-
ther converted into 3,3′,4′-trihydroxybibenzyl. Note that batatasin 
III and pinostilbene might be too stable to be transformed further 
in a colon environment. In another animal study, it was suggested 
that intragastric administration of resveratrol and piceatannol in 
rats not only leads to conjugated metabolites but also the methyla-
tion of piceatannol to form O-methyl piceatannol and its conju-
gates (Setoguchi et al., 2014).

In addition to conversions between stilbenoid monomers, since 
1998, there have been several studies that have mentioned the oli-
gomerization of resveratrol and pterostilbene to form dimers or 
trimers through catalyzation with laccase (Jeandet et al., 2020). 
Nevertheless, although the microbial cultures contributing the lac-
case were not bacterial strains, they still provided the potential to 
think in terms of stilbenoid metabolism.

5. Interactions between gut microbiota and analogues of res-
veratrol and pterostilbene

Resveratrol is the most well-studied member of the stilbenoid 
group due to its marvelous health benefits (Table 1). Therefore, 
its analogues have gained attention for their potential in disease 
prevention (Table 2). However, only a few studies have mentioned 
their effects on gut microbiota modulation, which, in turn, also 
leads to health benefits. Hereinafter, some of the reported stilbe-
noids with benefits in terms of disease amelioration via interac-
tions with gut microbiota will be discussed.

Piceatannol (Figure 1) is a hydroxyl derivative of resveratrol 
that is naturally derived from some plants, such as Euphorbia la-
gascae, and some of its beneficial properties have been reported 
previously (Osman et al., 2016). In 2016, it was revealed that the 
anti-obesity effects of piceatannol may be partially attributed to 
the re-composition of gut microbiota (Tung et al., 2016). Briefly, 
piceatannol increased the relative abundance of Firmicutes, while 
it decreased Bacteroidetes and Lactobacillus, as compared to the 
group given a HFD without piceatannol supplementation. Another 
study supplemented diets given to Zucker rats with piceatannol and 
found that the effect was not as expected; however, some changes 
were observed in terms of the relative abundance of fecal micro-
biota. In particular, although piceatannol did not lead to many sig-
nificant changes in phylums, it did significantly reduce Lactoba-
cillus animalis, Lactobacillus oris, Bacteroides acidifaciens, and 
Clostidium hathewayi and led to increases in Bacteroides dorei, 
Clostidium aerotolerans, Clostidium viride, and Faecalibacterium 
prausnitzii (Hijona et al., 2016).

In another in vitro study, intervention with stilbenoids (resvera-
trol, oxyresveratrol, batatasin III, piceatannol, pinostilbene, and 
thunalbene) was found to modulate the microbial compositions 
originating from four donors (Jaimes et al., 2019). In addition to 
a decrease in the F/B ratio, there was a reduction in Clostridium 
and elevations in Faecalibacterium prausnitzii and Ruminococcus 
gnavus. Notably, the abundance of Faecalibacterium prausnitzii 
was suggested to be related to the production of SCFAs. In com-
parison, resveratrol and piceatannol exhibited the greatest effects 
on the modulation of microbial composition, followed by thunal-
bene and batatasin III.

6. Future perspectives

In summary, the regulative capability of resveratrol on gut micro-
biota has been well-defined and partially contributes to the preven-

tion of several diseases. The analogues of resveratrol, including 
pterostilbene and piceatannol, are interesting compounds that also 
lead to changes in gut microbial composition. Notably, pterostil-
bene has a synergistic effect when combined with different antibi-
otics. However, the role of stilbenoids in disease alleviation should 
be further clarified. In addition, the transformations of individual 
stilbenoids in the colon environment, either via microbial conver-
sion or colonic/hepatic enzymatic transformation or conjugation, 
also need to be further investigated. The bioactive effect of these 
metabolites should not be neglected, as some of them have been 
proven to have disease prevention capabilities in recent studies. 
All in all, stilbenoids may be striking choices for development as 
chemopreventive agents, and most importantly, their modulatory 
effects on gut microbial may greatly increase their potential for 
improving gut health.
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