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Abstract

Cancers of all types are among the four main non-communicable diseases, a category of diseases responsible 
for 38 million yearly deaths worldwide. Although various medical procedures including surgery, immunotherapy, 
radiation therapy, hormone therapy, stem cell transplant and chemotherapy have been used for decades in the 
treatment and control of cancer, current survival rates suggest that more definitive and effective treatment strate-
gies are warranted. This work provides a succinct summary of the various methods used for producing anticancer 
peptides and protein hydrolysates from food sources, their modes of action, as well as descriptions of their an-
titumour properties in cellular and animal models. Although the mechanisms by which protein hydrolysates and 
peptides exert antitumor and antiproliferative effects are not entirely elucidated, there is evidence pointing to 
antioxidative function as an important predictor of their anticancer property.
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1. Introduction

According to data on the global cancer incidence and mortality 
burden released in 2014 by the WHO, about 8.2 million cancer-
related fatalities and 14.1 million new cases of cancer (excluding 
non-melanoma skin cancer) were diagnosed worldwide in 2012 
(WHO, 2014). In spite of the promising advances made over the 
years in medical sciences in general, and in cancer treatment in 
particular, current strategies for the treatment of cancer remain 
inadequate and unsatisfying in terms of treatment outcomes, as 
well as short and long term health effects (Miller et al., 2016). For 
instance, apart from aesthetic concerns and post-surgery negative 
body image, it has been reported that about 25–60% of women 
develop chronic pain following mastectomy (Miller et al., 2016; 
Vilholm et al., 2008). In both men and women, radiation therapy, 

surgery and certain types of chemotherapy have been shown to ad-
versely affect fertility and reproductive organs (Barton et al., 2013; 
Wasilewski-Masker et al., 2014). Furthermore, irritability, loss of 
libido, hot flashes and night sweats have been reported in patients 
undergoing hormone therapy, with certain types of hormone thera-
py increasing the potential for subsequent diagnosis with diabetes, 
osteoporosis and obesity (Keating et al., 2010; Saylor and Smith, 
2013; Wadhwa et al., 2009). Studies have also shown that cancer 
survivors who underwent stem cell transplantation are prone to 
subsequently face the challenge of chronic anemia and recurrent 
infections (Miller et al., 2016). Given cancer’s standing as a major 
cause of morbidity and mortality, which affects people in every 
country and region as well as the expectation that the global cancer 
burden will surpass 20 million new cancer cases by 2025 (WHO, 
2014), the development of alternative and/or supplementary strate-
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gies for reducing the risk of cancer is critically needed.
The idea that cancer incidence and/or progression can be pre-

vented, delayed, suppressed or reversed by lifestyle modification 
such as the administration or consumption of natural or biologi-
cal (including dietary) substances with the capacity to enhance the 
host organism’s defense mechanisms or limit exposure to and/or 
interaction with carcinogens is not new (Munjal et al., 2012; Stew-
ard and Brown, 2013). Studies have reported increased cancer risk 
in subjects with lower intakes of fruits, vegetables, whole grains 
and red meat (Hoang et al., 2018; Levi et al., 1999; McCullough 
et al., 2003). Improved diet and other lifestyle changes like weight 
management, increased physical activity and minimal or zero alco-
hol consumption have all been shown to lower the disease risk for 
cancer (McCullough et al., 2011). However, a considerable pro-
portion (37–87%) of cancer patients are known to take advantage 
of alternative cancer therapies due to a number of reasons as pre-
viously summarized (Rajendran et al., 2017), including increased 
patient awareness and access to information, the belief that “natu-
ral is safer”, the side effects of conventional drugs, and increased 
patient autonomy. Furthermore, apart from the adoption of specific 
dietary habits and the increased consumption of certain classic nu-
trients as a strategy for reducing cancer risk (Milner, 2002), there 
is a growing body of evidence (Chatterjee et al., 2018; Daliri et al., 
2017; Hsu et al., 2011; Sheih et al., 2010; Suarez-Jimenez et al., 
2012) suggesting that food-derived protein hydrolysates and pep-
tides could be important for reducing cancer risk thus explaining 
the significant attention this area of research currently enjoys and 
justifying the need for this work.

2. Food sources of anticancer peptides and potential mecha-
nisms of action

Food-derived bioactive peptides and protein hydrolysates with an-
ticancer properties have been produced from a variety of animal 
and plant sources including soybean (Mora-Escobedo et al., 2009), 
half-fin anchovy (Song et al., 2014), chickpea (Xue et al., 2012), 
common bean (Luna-Vital et al., 2016), sea cucumber (Pérez-Vega 
et al., 2013), tuna cooking juice (Hung et al., 2014), blood clam 
muscle (Chi et al., 2015), walnut (Jahanbani et al., 2016), maize 
(Ortiz-Martinez et al., 2017), mung bean (Gupta et al., 2018), 
loach (You et al., 2011), fish protein (Picot et al., 2006), tunicate 
(Kim, 2011), as well as whey and casein (Sah et al., 2018). Table 
1 contains additional sources of protein hydrolysates and peptides 
with anticancer properties. In general, these products are gener-
ated from the enzymatic hydrolysis of food proteins to produce a 
complex matrix of peptides called protein hydrolysate. The hydro-
lysates are usually composed of active and non-active peptides; 
therefore, further processing to obtain fractions that are enriched 
with active fractions may be carried out (Doyen et al., 2011; Pere-
go et al., 2011). In some cases, the active peptide fractions are sub-
jected to additional separation and purification protocols that yield 
homogenous peptides suitable for amino acid sequence analysis 
(Hung et al. 2014; Ma et al. 2015; Pan et al., 2016; Wang and 
Zhang, 2017; Wang et al., 2013; You et al., 2011).

2.1. Anticancer peptides and hydrolysates: mechanisms of 
action

Food-derived protein hydrolysates and peptides are believed to 
modulate their anticancer functions through a number of well delin-
eated mechanisms of action including apoptosis induction and cell 

cycle arrest, inhibition of intracellular signaling systems, regulation 
of immune system, protease inhibition, and nucleic acid impairment 
(Ortiz-Martinez et al., 2014; Rajendran et al., 2017). Apoptosis, the 
carefully controlled and programmed death of cells is widely rec-
ognized as one of the most effective means through which the body 
regulates cell death and division, with homeostatic maintenance of 
the appropriate number of cells (Indran et al., 2011). Anticancer 
protein hydrolysates and peptides are known to induce apoptosis in 
cancer cells by upregulating apoptotic gene expression as was ob-
served with the enhancement of caspase-3, p21 and p53 expressions 
in MCF-7 human breast cancer cells by soybean-derived peptides 
(Park et al., 2009), as well as downregulating tumorigenic genes 
as seen with the suppression of PTTG1 and TOP2A gene expres-
sions by soybean-derived peptide fractions in HeLa cells (Robles-
Ramírez et al., 2012). Bioactive peptides and protein hydrolysates 
are also known to exert their anticancer effects by orchestrating 
cellular DNA damage as was the case with common bean-derived 
peptide GLTSK whose impairment of DNA function was observed 
as the overexpression of the histone γH2AX in HCT116 human 
colorectal cancer cells (Luna-Vital et al., 2016). The histone variant 
H2AX is known to be rapidly phosphorylated at the Ser-139 residue 
as a result of DNA double-strand breakage yielding γH2AX, whose 
formation is routinely used as a highly specific and sensitive indica-
tor of DNA damage (Luna-Vital et al., 2016; Mah et al., 2010). Ad-
ditionally, the polypeptide lunasin was reported to reduce KM12L4 
human colon carcinoma cells adhesion by disrupting α5β1 integrin 
and extracellular matrix interaction (Dia and González de Mejia, 
2011; Rajendran et al., 2017) and thus impair tumor progression. 
This is because integrin adhesion to extracellular matrix is critical 
for intra-tumor endothelial cell proliferation and migration (Con-
coni et al., 2010). In an earlier study in which lunasin induced apop-
tosis in HT-29 human colon cancer cells by means of mitochondrial 
pathway activation and induction of nuclear clusterin expression, 
Dia and González de Mejia (2010) credited the anticancer property 
of the polypeptide to its RGD motif, which promotes adhesion and 
internalization of lunasin into the cell through interaction with the 
extracellular matrix (Rajendran et al., 2017). Also, using molecular 
docking studies, Wang et al. (2008) revealed the potential of three 
soy bean-derived peptides (FEITPEKNPQ, IETWNPNNKP, and 
VFDGEL) to inhibit topoisomerase II. Other described mecha-
nisms of action include histone deacetylation, protease inhibition, 
membrane permeation and disruption, and calcium modulation as 
reviewed by Rajendran et al. (2017) and Sah et al. (2015).

2.2. Food protein anticancer properties—the antioxidant con-
nection

Reactive oxygen species (ROS) such as hydroxyl radicals, hydro-
gen peroxide, singlet oxygen and superoxide anions are typically 
produced as a result of endogenous and exogenous stimuli, and 
are often routinely neutralized by living organisms using well-
established endogenous antioxidant defense systems (Nwachukwu 
and Aluko, 2019). When produced in excess, ROS can overwhelm 
natural defense systems resulting in a state of oxidative stress. Sus-
tained and cumulative oxidative stress has the potential to cause 
deleterious oxidative damage to cellular macromolecules such as 
proteins, lipids and nucleic acids resulting in irreversible altera-
tion of cellular functions (Fuchs-Tarlovsky, 2013; Nwachukwu 
and Aluko, 2019). In the case of oxidative damage to DNA for 
instance, ROS can react with cellular components such as phos-
pholipids and proteins to form secondary reactive intermediates, 
which can irreversibly bind to DNA bases to form DNA adducts 
(Marnett, 2000). Since DNA adducts can promote miscoding and 
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even mutations if they evade cellular repair mechanisms, their for-
mation is important in the carcinogenic process (Fuchs-Tarlovsky, 
2013). Studies have linked oxidative stress with the pathogenesis 
of inflammation-related cancers, and agents with the capacity to 
protect cells against ROS attack by quenching free radicals, are 
thought to be potent chemopreventive candidates (Chi et al., 2015; 
Sheih et al., 2010). In fact, the correlation of antioxidative func-
tion with anticancer property has traditionally been reported in a 
range of biological and chemical agents, including dietary kelp 
and plant phenolics (Cai et al., 2004; Dai and Mumper, 2010; 
Maruyama et al., 1991). Against this backdrop, peptides with 
antioxidative functions have been shown to also possess antican-
cer properties. For example, an antioxidant peptide fraction from 
algae protein waste was found to induce cell cycle arrest in and 
dose-dependently inhibit the growth of AGS human gastric can-
cer cells (Sheih et al., 2010). Additionally, the anticancer activity 
of protein hydrolysates and peptides with antioxidative properties 
such as the oyster-derived LANAK (Umayaparvathi et al., 2014), 
a fresh water fish-derived peptide fraction, LPH-IV (You et al., 
2011), and H3 (a polypeptide with 117 amino acid residues) from 
the marine invertebrate, Arca subcrenata (Chen et al., 2013) have 
also been demonstrated. Due to the proven capacity of antioxidants 
to protect healthy cells from oxygen-based radicals during cancer 
therapy and the use of antioxidant compounds in combination with 
anticancer drugs such as doxorubicin and anthracycline (Fuchs-
Tarlovsky, 2013), antioxidant peptides hold great promise for simi-
lar chemotherapeutic applications.

3. Ex-vivo anticancer protein hydrolysates and peptides

The antitumor and/or antiproliferative capacity of food-derived 
protein hydrolysates and peptides have been amply demonstrated 
in various cancer cell models, using hydrolysates and peptides 
that vary in both their sources and chemical structures. Lunasin, 
the naturally-occurring 43-amino acid peptide first identified in 
soybean was found to induce apoptosis and cause cytotoxicity 
to HT-29 human colon cancer cells (Dia and González de Mejia, 
2010). In a recent study, Ortiz-Martinez et al. (2017) reported the 
antiproliferative effect of peptide fractions from albumin alcalase 
hydrolysates of a white hybrid maize (Asgrow-773) and a quality 
protein (CML-502) maize as well as that of their derived peptides 
on HepG2 cells, an in vitro model of human liver cancer. The pep-
tide fractions from both maize samples were found to inhibit the 
growth of HepG2 cells in a dose-dependent manner by up to 94% 
and to increase the rate of apoptosis induction in HepG2 cells by a 
staggering 400% on the average. Unlike peptide fractions obtained 
following the alcalase hydrolysis of corn gluten meal, which were 
shown to block HepG2 DNA replication in the S phase of the cell 
cycle in a different study (Li et al., 2013), the maize peptide frac-
tions in this study had no modulatory effect on HepG2 cell cycle 
(Ortiz-Martinez et al., 2017). The study by Li et al. (2013) also 
found that corn peptides induced apoptosis in HepG2 cells in a 
dose-dependent manner by significantly inhibiting the expression 
of antiapoptotic Bcl-2 protein and upregulating the expression of 
p53 and cleaved caspase-3. It has also been reported that apoptosis 
induction via the downregulation of Bcl-2, PARP and caspase-9 
levels as well as the upregulation of p53, Bax and cleaved cas-
pase-3 expressions was central to the antiproliferative effects of 
tuna cooking juice protein hydrolysates and ultrafiltration peptide 
fractions on MCF-7 human breast cancer cells (Hung et al., 2014).

In addition, a study which evaluated the effect of five pure pep-
tide sequences derived from the non-digestible fraction of com-

mon bean (Phaseolus vulgaris L.) showed that the two most potent 
peptides (GLTSK and GEGSGA) selectively inhibited the prolif-
eration of HCT116 colon cancer cells but not that of CCD-33Co 
normal colon cells (Luna-Vital et al., 2016). While the inhibition 
of HCT116 cells by GLTSK was thought to be through loss of 
mitochondrial membrane potential, GEGSGA peptide suppressed 
the proliferation of the cancer cells via DNA damage. Of particu-
lar importance was the finding that when combined, either peptide 
induced apoptosis and synergistically enhanced the effect of the 
chemotherapy drug oxaliplatin on HCT116 cells—a result that 
could have wide implications for peptide use in cancer combina-
tion therapy. Confocal microscopy data also revealed that when 
combined with oxaliplatin, GEGSGA promoted PARP cleavage, 
decreased the levels of antiapoptotic Bcl-2 and caused the activa-
tion and nuclear translocation of p53 protein (Luna-Vital et al., 
2016). The antioxidant peptide, WPP, from blood clam protein 
hydrolysates was shown to selectively inhibit the proliferation of 
PC-3 and DU-145 human prostate cancer cells as well as HeLa and 
H1299 non–small-cell lung cancer cell lines while showing hardly 
any cytotoxicity to normal NIH3T3 mouse fibroblast cells (Chi et 
al., 2015). WPP also induced apoptosis in PC-3 cells with classical 
apoptotic changes in morphology such as chromatin condensation, 
cytoplasmic blebbing and nuclear fragmentation being observed in 
the cells (Chi et al., 2015).

Also, using an MTT-based spectrophotometric assay, a recent 
study found that alcalase and trypsin protein hydrolysates from 
mung bean vicilin inhibited the proliferation of human breast can-
cer cell lines MCF-7 and MDA-MB-231 (Gupta et al., 2018). Addi-
tional studies have also demonstrated the anticancer effects of food-
derived protein hydrolysates and peptides in cellular models such 
as the cytotoxic effects of walnut protein hydrolysates on human 
breast (MDA-MB231) and colon (HT-29) cancer cells (Jahanbani et 
al., 2016), sea cucumber hydrolysates and peptide fractions on HT-
29 colorectal cancer cells (Pérez-Vega et al., 2013), and tuna dark 
muscle hydrolysates and peptides (LPHVLTPEAGAT and PTAE-
GGVYMVT) on MCF-7 human breast cancer cell line (Hsu et al., 
2011). Other studies include algae protein-derived peptide (VE-
CYGPNRPQF) on AGS human gastric adenocarcinoma cell model 
(Sheih et al., 2010), germinated soybean protein hydrolysates on 
HeLa and C-33 cervical cancer cells (Mora-Escobedo et al., 2009), 
walnut protein hydrolysates on UACC-62 melanoma cells (Carrillo 
et al., 2017), and rice bran protein hydrolysates on human colon 
(Caco-2) and liver (HepG2) cancer cells (Kannan et al., 2008). The 
effect of processing on the anticancer property of food-derived pro-
tein hydrolysates has also been studied. Song et al. (2011) showed 
that the heated products of half-fin anchovy peptic hydrolysates had 
stronger antiproliferative effects on DU-145, H1299 and ECA-109 
human esophageal cancer cells than the unheated samples. Further 
studies with peptide fractions and a purified peptide (YALPAH) 
from the heated (121 °C for 30 min) protein hydrolysate products 
showed potent antiproliferative effects on PC-3 cancer cells and the 
induction of apoptosis by YALPAH (Song et al., 2014).

4. Animal studies

The anticancer properties of food-derived peptides and protein 
hydrolysates have been evaluated in animal models and reported 
by various researchers. In one study where the hepatic carcinoma 
cell line H-22 was subcutaneously injected into Chinese Kun Ming 
(KM) mice, the administration of chickpea albumin hydrolysates 
to the mice by oral gavage was found to significantly increase 
tumor inhibition rate and decrease tumor volume after a 12-day 
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treatment (Xue et al., 2012). In addition, chickpea albumin hydro-
lysate also significantly increased the proliferation of spleen lym-
phocytes and enlargement of splenic volume thus suggesting that 
administration of the hydrolysate enhanced the immune system 
and increased the weight of the immune organ. This is particularly 
noteworthy given the historical dilemma of administering anti-tu-
mor drugs and contending with the concomitant impairment of the 
immune system (Xue et al., 2012). In H-22 tumor-bearing BALB/c 
mice, corn peptide fractions dose-dependently suppressed tumor 
growth and enhanced spleen volume while upregulating the level 
of serum cytokines IL-2, IFN-γ and TNF-α in a concentration-de-
pendent manner (Li et al., 2013). Furthermore, the cationic and an-
timicrobial peptide lactoferricin was found to extend the survival 
of immune-deficient SCID/beige mice inoculated with Ramos hu-
man B-lymphoma cells (Furlong et al., 2010). After B-lymphoma 
cell inoculation via the tail vein and subsequent intraperitoneal 
injection of bovine lactoferricin, adult mice were weighed and 
examined daily for signs of distress while hind limb paralysis as 
a result of B-lymphoma cell dissemination to the central nervous 
system was taken as a measure of survival (Furlong et al., 2010). 
Bovine lactoferricin is an amphipathic, 25-amino acid polypeptide 
obtained following peptic digestion of the iron-binding protein, 
lactoferrin in cow milk. It is thought that bovine lactoferricin binds 
to negatively charged structures on cancer cells and then disrupts 
the membrane of those cells by inserting its bulky hydrophobic 
amino acid residues into the phospholipid bilayer of the cell mem-
branes (Furlong et al., 2010; Hoskin and Ramamoorthy, 2008). In 
an earlier study, the antitumour effect of bovine lactoferricin on 
mice neuroblastoma xenograft tumors was shown (Eliassen et al., 
2006). The results indicated that tumors from rats treated with the 
polypeptide and weighed at autopsy had significant reductions in 
weight compared with those from control subjects. Furthermore, in 
a different study Eliassen et al. (2006) studied the effects of P2, a 
polypeptide fraction from Arca subcrenata, on KM mice subcuta-
neously inoculated with S-180 sarcoma or H-22 hepatoma tumors 
and reported significant reductions in tumor weights. P2 reduced 
tumor weight by up to 60% in S-180 tumor-bearing mice and 46% 
in H-22 tumor-bearing mice at a dosage of 63 mg/kg/day. Also, 
using C57BL/6J mice subcutaneously inoculated with B16F10 
melanoma cells, the cationic peptide INKKI isolated from bovine 
β-casein was tested for antitumor activity (Eliassen et al., 2006). 
Results showed that following peritumoral injection of the peptide, 
INKKI-treated tumor-bearing mice had significantly reduced tu-
mor volume (up to 72%) and decreased metastasis loci in compari-
son with the untreated control. Furthermore, the peptide treatment 
led to a significant delay in tumor growth and doubling time (Elias-
sen et al., 2006). Lastly, it was reported that female Sprague-Daw-
ley rats with 7,12-dimethylbenz[α]anthracene (DMBA)-induced 
mammary tumorigenesis, which received 3.3 g soy peptide daily as 
part of their diet, had significantly reduced (up to 50%) incidence 
of ductal carcinomas (Eliassen et al., 2006). Additionally, the soy 
peptide (XMLPSYSPY) also induced apoptosis and the expression 
of p21, p53, and caspase-3 proteins, significantly reduced the num-
ber of tumors per mice, the weight of ductal carcinomas, and also 
extended the latency period of tumor development when compared 
to the control (Eliassen et al., 2006). Importantly, the soy peptide 
used in this study was purified to be isoflavone-free. Questions 
surrounding the continued efficacy of orally-ingested bioactive 
peptides in the face of the degradative action of digestive enzymes 
as well as their absorbability and bioavailability have been duly 
answered by studies showing the detection of intact peptides in 
blood circulation following oral gavage (van Platerink et al., 2006; 
Foltz et al., 2007; Tanaka et al., 2015; Matsui, 2018; Nwachukwu 
et al., 2019). In one study, up to 17 small angiotensin converting 

enzyme (ACE)-inhibitory peptides were found in plasma collected 
from human subjects who had consumed a peptide-enriched drink 
(van Platerink et al., 2006). In another study, MALDI-MS imag-
ing analysis revealed that Trp-His, an anti-atherosclerotic dipep-
tide administered by oral gavage to Sprague-Dawley rats, was 
absorbed intact into the systemic circulation due to its selective 
transport across the rat intestinal epithelium by the peptide trans-
porter, PepT1 (Tanaka et al., 2015). Recently, our work also report-
ed the detection in blood plasma of certain calmodulin-dependent 
phosphodiesterase (CaMPDE)-inhibitory peptides administered 
by oral gavage to adult Wistar rats and absorbed intact across the 
intestinal epithelium (Nwachukwu et al., 2019).

5. Conclusions

The common practice of grouping cancer types according to the 
major anatomical sites affected in various reports of global mortal-
ity tends to downplay cancer’s standing as a leading cause of death 
(WHO, 2014). It is arguably the top and most widespread cause of 
death as it affects populations in all countries and all regions of the 
world. The studies reviewed in this work represent ample proof of 
the promising potential of food-derived protein hydrolysates and 
peptides to function as anticancer agents. Given that these bioac-
tive agents are not drugs and are therefore, not designed for use in 
acute conditions, their consumption as part of the daily diet or as 
components of nutraceuticals and/or functional foods should be 
geared towards health promotion and prevention of cancer. Since 
over 60% of global cancer cases and 70% of cancer deaths occur 
in the low-income countries of Africa, Asia, and Central and South 
America (WHO, 2014), which typically have poorly developed 
healthcare systems, the gains of an early and habitual adoption of 
bioactive peptides and functional protein hydrolysates as part of a 
regular diet cannot be overemphasized. In addition, given the use 
of antioxidants in cancer treatment, future studies should focus on 
the prospect of utilizing antioxidant bioactive peptides in cancer 
combination therapy.
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